PROGRAM OVERVIEW

ReadyMathematics

Grades K–8

High-Quality, Research-Based
Supplemental Instruction | Practice | Assessment

Available in Spanish!
Results That Matter

Ready Mathematics helps students meet high expectations and ensures all students are on a path toward success.

It’s Proven to Work

Third-party research conducted in three states with 32 schools and 21,000 students provides evidence of success using the program’s instructional design.

Read the full report: CurriculumAssociates.com/ReadyMathBlendedESSA

High-Quality Resources You Can Trust

Say goodbye to wasting time searching online for random activities to supplement your curriculum. With Ready Mathematics, educators are supported with a supplemental program that received top ratings from EdReports, an independent nonprofit that delivers evidence-based reviews of instructional materials.

After an extensive review by expert educators, Ready Mathematics met all criteria at every grade level with all-green ratings across EdReports’ three gateways.
Make Mathematics Meaningful for Students and Manageable for Teachers

Transform your students into active, real-world problem solvers by supplementing your core mathematics curriculum with Ready Mathematics’ high-quality, research-based materials.

How can Ready Mathematics supplement your existing curriculum?

- Fully Prepare Students for the Rigor of State Assessments 4
- Engage All Students with Activities and Differentiation Resources 6
- Provide Practice for Conceptual Understanding, Fluency, and Application ... 8
- Simplify Planning with Embedded Guidance and Support 10
- Get More with i-Ready and Teacher Toolbox 12
- Program Components ... 14
Fully Prepare Students for the Rigor of State Assessments

Ensure your students have deep conceptual understanding of state standards by adding rigor to your core mathematics curriculum. *Ready Mathematics* lessons deliver everything you need to facilitate meaningful mathematical discourse in a manageable way that develops students’ problem-solving abilities.

Think-Share-Compare Routine

1. **Make Sense of the Problem**
 - Read and understand the problem or question. Think about the key information.

2. **Solve and Support Your Thinking**
 - Include pictures, models, and/or explanations in your solutions. If you have time, show another way to solve it.

3. **Discuss**
 - Explain your thinking to a partner. Discuss how your strategies are alike and different.

4. **Compare**
 - Compare your strategies with the class, including the strategies in the *Ready* book.

5. **Connect and Reflect**
 - Complete and discuss the *Connect It* questions.

6. **Apply**
 - Apply what you have learned to a new problem. Be sure to support your answer.

Presentation slides make it easy for teachers to plan and facilitate the Think–Share–Compare routine.

Multiday lessons allow students time to develop the skills and a deeper understanding of the concepts required for long-term success.

Lesson Pacing Guide

<table>
<thead>
<tr>
<th>Whole Class Instruction</th>
<th>Practice and Problem Solving</th>
<th>Small Group Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher-Toolbox.com</td>
<td>Teacher-Toolbox.com</td>
<td>Teacher-Toolbox.com</td>
</tr>
<tr>
<td>1.5K</td>
<td>1.5K</td>
<td>1.5K</td>
</tr>
</tbody>
</table>

We continually update the Interactive Tutorials. Check the Teacher-Toolbox for the most up-to-date offerings for this lesson.
Dear Family,

Your child is learning about unit rates.

Rates and unit rates are often used in everyday life. Some examples that you are probably familiar with are miles per hour, price per pound, and earnings per hour. You might use rates and unit rates when you are grocery shopping, traveling, or figuring out payments to a babysitter.

Rates and unit rates are related to ratios. A ratio compares two quantities, such as 6 cups of flour to 1 cup of sugar in a recipe. A rate compares the first quantity to just one of the second quantity. In the recipe example, the rate of flour to sugar is 2 cups of flour to 1 cup of sugar. The rate can be represented as a ratio 2:1 or as a unit rate 2 cups of flour per 1 cup of sugar.

Consider the following example:

A train travels 360 miles in 6 hours. The train makes no stops and travels at the same speed for the entire time. How could you use the ratio of miles to hours to find the speed for the entire time?

On the next page you will see two ways your child may find a rate and use it to solve problems. One way is by dividing to find the unit rate. The other way is by multiplying to find a rate for more than 1 unit of the second quantity.

Rates and unit rates are related to ratios. A ratio compares two different quantities. The order in which the quantities are compared is important. A rate compares the first quantity to only one of the second quantity. In the recipe example, the ratio flour:sugar is 6:1 because it is the number of cups of flour compared to 1 cup of sugar. A rate flour:sugar is a way to compare two different quantities.

Rates and unit rates are related to ratios. A ratio compares two quantities, such as 6 cups of flour to 1 cup of sugar in a recipe. A rate compares the first quantity to just one of the second quantity. In the recipe example, the rate of flour to sugar is 2 cups of flour to 1 cup of sugar. The rate can be represented as a ratio 2:1 or as a unit rate 2 cups of flour per 1 cup of sugar.

Consider the following example:

A train travels 360 miles in 6 hours. The train makes no stops and travels at the same speed for the entire time. How could you use the ratio of miles to hours to find the speed for the entire time?

On the next page you will see two ways your child may find a rate and use it to solve problems. One way is by dividing to find the unit rate. The other way is by multiplying to find a rate for more than 1 unit of the second quantity.

Rates and unit rates are related to ratios. A ratio compares two quantities, such as 6 cups of flour to 1 cup of sugar in a recipe. A rate compares the first quantity to just one of the second quantity. In the recipe example, the rate of flour to sugar is 2 cups of flour to 1 cup of sugar. The rate can be represented as a ratio 2:1 or as a unit rate 2 cups of flour per 1 cup of sugar.

Consider the following example:

A train travels 360 miles in 6 hours. The train makes no stops and travels at the same speed for the entire time. How could you use the ratio of miles to hours to find the speed for the entire time?

On the next page you will see two ways your child may find a rate and use it to solve problems. One way is by dividing to find the unit rate. The other way is by multiplying to find a rate for more than 1 unit of the second quantity.

Rates and unit rates are related to ratios. A ratio compares two quantities, such as 6 cups of flour to 1 cup of sugar in a recipe. A rate compares the first quantity to just one of the second quantity. In the recipe example, the rate of flour to sugar is 2 cups of flour to 1 cup of sugar. The rate can be represented as a ratio 2:1 or as a unit rate 2 cups of flour per 1 cup of sugar.

Consider the following example:

A train travels 360 miles in 6 hours. The train makes no stops and travels at the same speed for the entire time. How could you use the ratio of miles to hours to find the speed for the entire time?

On the next page you will see two ways your child may find a rate and use it to solve problems. One way is by dividing to find the unit rate. The other way is by multiplying to find a rate for more than 1 unit of the second quantity.

Rates and unit rates are related to ratios. A ratio compares two quantities, such as 6 cups of flour to 1 cup of sugar in a recipe. A rate compares the first quantity to just one of the second quantity. In the recipe example, the rate of flour to sugar is 2 cups of flour to 1 cup of sugar. The rate can be represented as a ratio 2:1 or as a unit rate 2 cups of flour per 1 cup of sugar.

Consider the following example:

A train travels 360 miles in 6 hours. The train makes no stops and travels at the same speed for the entire time. How could you use the ratio of miles to hours to find the speed for the entire time?

On the next page you will see two ways your child may find a rate and use it to solve problems. One way is by dividing to find the unit rate. The other way is by multiplying to find a rate for more than 1 unit of the second quantity.

Rates and unit rates are related to ratios. A ratio compares two quantities, such as 6 cups of flour to 1 cup of sugar in a recipe. A rate compares the first quantity to just one of the second quantity. In the recipe example, the rate of flour to sugar is 2 cups of flour to 1 cup of sugar. The rate can be represented as a ratio 2:1 or as a unit rate 2 cups of flour per 1 cup of sugar.

Consider the following example:

A train travels 360 miles in 6 hours. The train makes no stops and travels at the same speed for the entire time. How could you use the ratio of miles to hours to find the speed for the entire time?

On the next page you will see two ways your child may find a rate and use it to solve problems. One way is by dividing to find the unit rate. The other way is by multiplying to find a rate for more than 1 unit of the second quantity.
Engage All Students with Activities and Differentiation Resources

Whether you need a replacement lesson or are just looking for a few quality tasks, the content in Ready Mathematics is designed with the supports you need to engage all learners.

Lesson 12: Divide Whole Numbers

Step By Step

Connect It
- Have students describe why the model in problem 2 represents \(\frac{4}{5} \) of the answer. Also, have students explain how the subtraction problem connects to the area model idea.

Solve It
- Students can subtract partial products to find the solution. For example:
 - \(7 \times 50 = 350 \) or \(350 \) and 1,000
 - \(7 \times 2 = 14 \) and 100
 - \(7 \times 1 = 7 \) and 10

Reflect
- Students can subtract partial products to find the solution. For example:
 - \(7 \times 50 = 350 \) or \(350 \) and 1,000
 - \(7 \times 2 = 14 \) and 100
 - \(7 \times 1 = 7 \) and 10

ELL Language Development

Academic Vocabulary:
- Affected means “to change in some way”

Reading/Writing
- Ask students to name the quantities and state the ratio in a complete sentence before writing it in at least two ways:
 - The basketball affects the total score.
 - The basketball does not affect the ratio of tennis to baseball.

Hands-On Activities, and Visual Models
- Students can subtract partial products to find the solution. For example:
 - \(7 \times 50 = 350 \) or \(350 \) and 1,000
 - \(7 \times 2 = 14 \) and 100
 - \(7 \times 1 = 7 \) and 10

Language Routines enhance the Think–Share–Compare routine by supporting students as they make sense of the problem, learn content, develop mathematical practices, and master language.

© 2023 Curriculum Associates, LLC. All rights reserved. | 08/23 1.5K
Quick Check and Remediation provides opportunities to monitor student understanding and ways to address common errors.

With the optional Teacher Toolbox add-on, you have a wealth of resources available for reteaching, reinforcement, and extension.

See more about the differentiation resources available on Teacher Toolbox on page 12.
Provide Practice for Conceptual Understanding, Fluency, and Application

Set students up for success with robust practice that matches both the rigor and item types of state assessments. *Ready Mathematics* includes practice opportunities for conceptual understanding, procedural fluency, and application for use in class, after school, or at home.

Conceptual practice ensures students understand the “why” behind the mathematics.

Lesson 2

Multiply and Divide with Powers of Ten

Study the example showing how the decimal point moves when you multiply a decimal number by a power of ten. Then solve problems 1–7.

Example

Find $100 	imes 0.004$.

- Break 100 into the product of 10s.

 $100 = 10 	imes 10$

- The decimal point moves one place to the right for each factor of ten.

 $10 	imes 0.004 = 0.4$

1. Write the missing power of ten.

- $a. 0.04 \times ____ = 0.4$
- $b. 0.006 \times ____ = 0.006$
- $c. 0.007 \times ____ = 7$

2. When you multiply a decimal by a power of ten, what is the relationship between the number of places the decimal point moves and the number of zeros in the power of ten? Give an example.

3. Complete the equations.

- $a. 0.03 \times 1000 = ____$
- $b. 0.008 \times 100 = ____$

Vocabulary

- **Power of ten**

 A number that can be written as a product of tens.

 $10 = 10$

 $100 = 10 \times 10$

 $1,000 = 10 \times 10 \times 10$
Answer questions 1–40. Answer questions outlined in red in your test book. Answer all other questions on the Answer Form.

Part A
1. Which expressions can be used to find the area of the rectangle? Mark all that apply.

A 3 + 3 + 3
B 4 × 4 + 4
C 3 + 4
D 4 × 3

Part B
2. How many times must both players roll the number cube four times and record the four numbers at the top of the Recording Sheet? Players use these same numbers for Rounds 1 through 4.

A 6 + 6 + 6 + 6 + 6
B 2 + 2 + 2 + 2 + 2 + 2
C 6 + 2
D 6 × 2

Go On

Unit Games reinforce student learning in an engaging, novel way.

State assessment practice mirrors the type and format of state assessments to prepare students for high-stakes testing and build their confidence.

Performance tasks integrate concepts and skills from multiple standards to give students practice with solving multistep problems.

Performance Task

Answer the questions and show all your work on separate paper.

Rocky's parents are buying him a cell phone. His parents told him that they could budget only $1,000 this year for his cell phone and calling plan. Rocky wants to get the brand new J-phone and found three wireless companies that carry that phone. The companies each have different plans that include unlimited talk, text, and data. Neighbors Mobile charges $180 for the J-phone and $80 per month for the calling plan. V-Cell charges $195 for the J-phone and $70 per month for the calling plan. BG&G Mobile charges the most for the J-phone at $270, but the calling plan is only $60 per month.

Which plan can Rocky's parents afford with a budget of $1,000? Write a summary for Rocky to give to his parents to explain his choice. Make sure you show your calculations and explain what they mean.

Reflect

Reflect on Mathematical Practices After you complete the task, choose one of the following questions to answer.

- Model How did you decide whether to write equations or inequalities to represent the cost of the different plans?
- Reason Mathematically How could Rocky convince his parents that his choice will be under the budget they've set?

Checklist

Did You . . .

Write inequalities to represent the calling plans?
Use the inequalities to solve the problem?
Choose a plan and support your choice?

© 2023 Curriculum Associates, LLC. All rights reserved. | 08/23 1.5K
Simplify Planning with Embedded Guidance and Support

Create a predictable learning environment where students thrive with a program that’s easy to deliver. Ready Mathematics includes the tools to build your own expertise and make an immediate and sustained impact on the classroom.

Planning resources help teachers select lessons and differentiation resources to target your unique classroom needs.

Pacing for Ready® Mathematics as a Supplement

Each Ready Mathematics lesson is approximately one week of instruction. A day of instruction assumes at least 45–60 minutes of mathematics instruction.

For additional planning and pacing guidance, please visit Math.ReadyCentral.com

Monthly Pacing Guide*

<table>
<thead>
<tr>
<th>Month</th>
<th>Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>Lessons 1–4</td>
</tr>
</tbody>
</table>
| October | Lessons 5–8
 | Unit 1 Math in Action |
| November | Lessons 9–12
 | Unit 2 Math in Action |
| December | Lessons 13–16
 | Unit 3 Math in Action |
| January | Lessons 17–19
 | Unit 4 Math in Action |
| February | Lessons 20–22 |
| March | Lessons 23–27 |
| April | Lessons 28–30
 | Unit 5 Math in Action |
| May | Lessons 31–33
 | Unit 6 Math in Action |

* Adjust suggested monthly pacing based upon school start date.

Pacing for Ready Mathematics as a Supplement

Using Ready Mathematics as a supplement to an existing program ensures the rigor and coherence of the standards are taught thoroughly and systematically. Ready Mathematics helps teachers meet the challenges of the college- and career-ready standards and exposes students to the types of higher-level questions that they will see on assessments.

Ready Mathematics integrates strategies, models and concepts with the Standards for Mathematical Practice. Throughout instruction there is a balance of conceptual understanding (the “why”) and procedural fluency (the “how”).

Use Ready Mathematics lessons after students have developed conceptual understanding and practiced procedural skills using lessons from an existing program to make sure that they are applying the standards with the appropriate degree of rigor.

The following two suggested implementation options offer different ways to implement Ready Mathematics to supplement weekly math instruction.

Ready Mathematics suggested weekly pacing (1 lesson a week)

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Instruction Focus</td>
<td>Core Program</td>
<td>Core Program</td>
<td>Ready Mathematics Introduction (15 minutes)</td>
<td>Ready Mathematics Guided Practice and State Practice (45 minutes)</td>
</tr>
</tbody>
</table>

Ready Mathematics suggested weekly pacing (centers or rotations)

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson</td>
<td>Core Program</td>
<td>Core Program</td>
<td>Core Program</td>
<td>Core Program</td>
</tr>
<tr>
<td></td>
<td>Leverage Ready Mathematics lessons during small group center or rotation time.</td>
<td>Leverage Ready Mathematics lessons during small group center or rotation time.</td>
<td>Leverage Ready Mathematics lessons during small group center or rotation time.</td>
<td>Leverage Ready Mathematics lessons during small group center or rotation time.</td>
</tr>
</tbody>
</table>

Monthly Pacing Guide*

September Lessons 1–4
October Lessons 5–8
Unit 1 Math in Action
November Lessons 9–12
Unit 2 Math in Action
December Lessons 13–16
Unit 3 Math in Action
January Lessons 17–19
Unit 4 Math in Action
February Lessons 20–22
March Lessons 23–27
April Lessons 28–30
Unit 5 Math in Action
May Lessons 31–33
Unit 6 Math in Action

© 2023 Curriculum Associates, LLC. All rights reserved. | 08/23 1.5K
Try It

Solution
Rina’s recipe: Students can simplify ratios to find the unit rate. Rina: $\frac{2}{3}$ (12 = $\frac{2}{3}$) = $\frac{4}{5}$
Jonah: $\frac{2}{3}$ = $\frac{4}{5}$
Each dozen of Rina’s cookies contains $\frac{5}{4}$ cup sugar. Each dozen of Jonah’s contains $\frac{3}{4}$ cup sugar. Rina’s cookies use more sugar per dozen. $\frac{3}{4}$ is greater than $\frac{5}{4}$.

Error Alert
Students who wrote Jonah may have found the rate of dozens of cookies per cup of sugar.
Rina: $\frac{2}{3}$ = $\frac{4}{5}$; Jonah: $\frac{3}{5}$ = $\frac{1}{2}$ However, that means Jonah’s recipe has more cookies per cup of sugar, not more sugar per dozen cookies.

Handling the needs of diverse learners.

Teaching tips in every lesson, such as EL Support, Error Alerts, Concept Extensions, and vocabulary strategies, highlight opportunities to monitor and provide scaffolded instruction to address the needs of diverse learners.

Mathematical Discourse
3 What does the table show? Students will recognize and name the types of shirts and costs covered in this lesson. Encourage them to digitize the table to recognize the differences in costs for various shirts and print. Also help them see how having all the information organized in rows and columns helps the reader compare the differences in costs.

English Language Learners
Discuss the phrase left over with students. Explain that it is just another way to say, “How much is left?” It means that you have something, and then some of it is used—or goes away—and what you still have remaining after that is what you have left or over.

Concept Extension 1
Use sentence frames to rephrase division as multiplication.
• Point out that thinking of a related multiplication fact can make finding the missing number in a division equation easier. Write the equation "8 ÷ 3 = ___" on the board. Then write the sentence frame, "I know what number equals ___".
• Have students read the question, filling in the blanks using numbers from the division equation. [3] times what number equals ___? [3] [1] Have students identify the number that completes both equations. [3]
• Repeat the steps for 24 ÷ 4 = ___ and 21 ÷ 3 = ___.

Concept Extension
Finding equal parts that are different shapes.
Materials: 3-square by 3-square sections of paper, 3 individual squares from the same squared paper, crayons or markers
• Draw a 3-x-3 by 3-square column on the board to duplicate the squares the students have. Model shading the bottom two squares of the first column and the bottom square of the middle column, for a total of 3 shaded squares that form a right angle. Point out that this is one equal part. Direct students to place the 3 individual squares on top of their shaded squares. Check to see they have positioned these squares correctly and have them color the squares underneath all the same color.
• Explain that equal parts for fractions means the parts are the same size; they do not have to be the same shape. Ask students to find as many equal parts of that same size as they can, using the 3 individual squares, and color each equal part a different color.
• Have students display their completed squares and discuss what they show. (Each of the 3 different colored parts of the large square are the same size even if their 3 squares are not next to each other).
Get More with i-Ready and Teacher Toolbox

Give every student a personalized learning experience. By combining the effective classroom instruction of Ready Mathematics with the intuitive data, online resources, and digital instruction of i-Ready, you can accelerate students’ learning and drive growth.

At the heart of the i-Ready Assessment suite is the adaptive i-Ready Diagnostic, which provides an individualized summary identifying students' strengths and where they may need additional support across the Grades K–12 continuum.

The Prerequisites report helps teachers address unfinished learning with time-saving resources like:

1. **Learning Progression:** Map the progression of standards going back more than two years.
2. **On-the-Spot Teaching Tips and Pacing Guidance:** Integrate prerequisite skills into grade-level content.
3. **Small Group Resources:** Target specific prerequisite skills with teacher-led, partner, and independent activities.

The i-Ready Assessment suite offers a collection of assessments designed to measure student performance and provide educators with actionable data and insights to help students reach grade-level proficiency and beyond.
Teacher Toolbox helps teachers meet the needs of all students by providing digital access to all *Ready Mathematics* Grades K–8 resources for instruction, practice, assessment, and differentiation.

i-Ready Personalized Instruction uses insights from students’ Diagnostic results to create a personalized path of engaging digital lessons. Students work through lessons on My Path at their own pace, or teachers can assign lessons to support students on their learning journey.

Visualize Rate

Today’s activity extends students’ understanding of ratios to find rates. Rates show the relationship, or ratio, between two quantities. Students will use knowledge of rates later as they solve problems about unit rates.

- **Rate** is a comparison of two quantities. For example, if a robot traveled 2 miles in 5 minutes, the rate would be 2 miles per 5 minutes or 2 miles/5 minutes.
- **Unit rate** is a rate in which the second quantity is 1. For example, if a monkey eats 12 bananas in 4 minutes, the rate would be 12 bananas/4 minutes or 3 bananas/minute.

Everyday Language

- **Miles per gallon**
- **Miles per minute**

Encourage students to think of how the word **per** is used in everyday language, e.g., miles per gallon or miles per minute, so miles per minute means “how many miles for each minute.”

What You Do

1. **Say:**
 - “Visualize the rate.
 - ”
 - “Which bathtub starts with more water? Which bathtub fills with water at a faster rate? Explain.”

2. **Show the student how to create a bar model for a comparison of minutes and batteries.”

3. **Have the student write the following sentence on a piece of paper:**
 - “The robot traveled 2 miles, so I will divide the minutes bar into 5 equal parts. It used 3 batteries. I will divide the batteries bar into 3 equal parts. Each part of the batteries bar is 3 batteries. Each part of the minutes bar is 5 minutes. The robot traveled 2 miles in 5 minutes. It is much easier to compare rates and compute with them when the second quantity is 1.”

4. **Prompt the student to solve:**
 - “What is the initial value of the rate of the robot?”
 - “What is the initial value of the rate of the robot?”

Materials

- **Number cube**
- **Function Cards**

What You Need

- **3 batteries**
- **5 minutes**
- **2 miles**

What You Do

1. **Say:**
 - “Visualize the rate.
 - ”
 - “Which bathtub starts with more water? Which bathtub fills with water at a faster rate? Explain.”

2. **Show the student how to create a bar model for a comparison of minutes and batteries.”

3. **Have the student write the following sentence on a piece of paper:**
 - “The robot traveled 2 miles, so I will divide the minutes bar into 5 equal parts. It used 3 batteries. I will divide the batteries bar into 3 equal parts. Each part of the batteries bar is 3 batteries. Each part of the minutes bar is 5 minutes. The robot traveled 2 miles in 5 minutes. It is much easier to compare rates and compute with them when the second quantity is 1.”

4. **Prompt the student to solve:**
 - “What is the initial value of the rate of the robot?”
 - “What is the initial value of the rate of the robot?”

Function Cards

- **Names:**
 - **Function Cards**

Go Further

- **Function Cards**

- **Function Cards**

- **Function Cards**

- **Function Cards**

CENTER ACTIVITY

Grade 8 Page 1 of 3

Grades K–8

- **Materials**
 - **Number cube**
 - **Function Cards**

- **What You Do**
 - **Say:**
 - “Visualize the rate.
 - ”
 - “Which bathtub starts with more water? Which bathtub fills with water at a faster rate? Explain.”

- **Show the student how to create a bar model for a comparison of minutes and batteries.”

- **Have the student write the following sentence on a piece of paper:**
 - “The robot traveled 2 miles, so I will divide the minutes bar into 5 equal parts. It used 3 batteries. I will divide the batteries bar into 3 equal parts. Each part of the batteries bar is 3 batteries. Each part of the minutes bar is 5 minutes. The robot traveled 2 miles in 5 minutes. It is much easier to compare rates and compute with them when the second quantity is 1.”

- **Prompt the student to solve:**
 - “What is the initial value of the rate of the robot?”
 - “What is the initial value of the rate of the robot?”

i-Ready Personalized Instruction

- **Tools for Instruction**
 - **Visualize Rate**

- **Teacher Toolbox**
 - **Interactive Tutorials**
 - **Teacher Toolbox**
 - **Interactive Tutorials**

- **Assessments**
 - **Unit 3 Unit Assessment Form A**

© 2023 Curriculum Associates, LLC. All rights reserved.
Program Components

Ready Mathematics K–8

Instruction Books
Engage students and develop deep understanding with clear, thoughtful instruction.

Practice and Problem Solving Books
Students can demonstrate their understanding through a wealth of practice options and opportunities.

For every lesson:
- Family Letter
- Practice for each section in Ready Instruction

For every unit:
- Unit Games
- Unit Practice
- Unit Performance Tasks
- Unit Vocabulary
- Fluency Practice Worksheets

Assessment Books
Give students exposure to the same content, format, and rigor of high-stakes tests with the program’s cumulative assessments.

E/S = Available in English and Spanish

Digital versions of Ready Mathematics Instruction, Practice and Problem Solving, and Assessment books are available on the Teacher Toolbox.
Optional Add-Ons

Online Teacher Toolbox
Quickly find additional research-based resources for instruction, practice, differentiation, and assessment to supplement your Grades K–8 mathematics curriculum—all in one convenient location.

- Presentation slides for the Think–Share–Compare routine
- Interactive Tutorials
- Ready Instruction Prerequisite Lesson PDFs
- Lesson Quiz PDFs
- Tools for Instruction PDFs
- Unit/Mid-Unit Assessment PDFs
- Family Letters

i-Ready Assessment and Personalized Instruction
Empower student growth and success with one comprehensive system that uses the insights from the Diagnostic to create a personalized path of engaging online lessons and recommended instructional resources.

i-Ready Success Central
Get on-demand access to implementation support and guidance included with your Teacher Toolbox or i-Ready purchase.

- Training videos
- Planning tools
- Implementation tips
- Discourse support

Manipulatives
Ready Mathematics was built to work with common manipulatives that you likely already have in your classroom. However, you can add individual materials to your existing kits or purchase manipulative kits developed specifically for use with Ready Mathematics through hand2mind®.

hand2mind® is a registered trademark of hand2mind, Inc.

© 2023 Curriculum Associates, LLC. All rights reserved. | 08/23 1.5K
To see how other educators are maximizing their Ready Mathematics experience, follow us on social media!

Curriculum Associates @CurriculumAssoc