Instruction

Strategies
 A
 M
 athematics
 s
 uccess

TABLE OF CONTENTS

Expressions and Equations

Lesson 1 Exponents 4
Lesson 2 Square Roots 14
Lesson 3 Solve Two-Step Equations 24
Lesson 4 Two-Step Equations with Rational Numbers 34
Lesson 5 Linear and Nonlinear Equations 44
Lesson 6 Slope 54
Lesson 7 Graph Linear Equations 64
Lesson 8 Solve Systems Graphically 74
Lesson 9 Solve Systems Algebraically 84
Plane Geometry
Lesson 10 Special Pairs of Angles 94
Lesson 11 Angle Sums 104
Lesson 12 Triangle Similarity 114
Linear Measurement and Area
Lesson 13 PythagoreanTheorem 124
Lesson 14 Distance Formula 134
Statistics
Lesson 15 Mean, Median, Range 144
Graphs
Lesson 16 Scatter Plots 154

Lesson solve systems graphically
 PART ONE: Learn About Systems of Equations

How can you find the solution of a system of equations from a graph?

The graph of a linear equation is a line formed by the ordered pairs (x, y) that are solutions of the equation.

$$
\begin{array}{rlrl}
(2,3): 3 & =\frac{1}{2}(2)+2 & (4,4): 4 & =\frac{1}{2}(4)+2 \\
3 & =1+2 & 4 & =2+2
\end{array}
$$

A system of linear equations is a set of two or more linear equations.

How can you use a graph to find the solution of a system of equations?

This system shows the costs of a pizza at two pizza shops; $y=$ cost in dollars and $x=$ number of toppings.
(1) $y=x+6$
(2) $y=0.5 x+8$

Graph both equations by plotting points. Choose values for x, and then use the equation to find the corresponding y-values.
$(2, \ldots \quad 8)$ and ($6, \underline{12}$) are solutions of equation (1).

Number of Toppings
$\left(2, \ldots _\right)$and ($6, \ldots$) are solutions of equation (2).

The solution of a system is an ordered pair (x, y)
Connect that is a solution of each equation. To find the solution using a graph, find the point where the lines intersect, or meet.

The solution of the system is $(4,10)$.
So, a pizza with 4 toppings costs $\$ 10$ at both pizza shops.

How could you use the graph to decide which pizza shop to choose?

Fill in the blanks as you solve the problem.

One gym charges a $\$ 60$ initiation fee, plus $\$ 20$ per month. Another gym charges $\$ 40$ per month with no initiation fee. This system shows the membership fees at the two gyms, where x represents the number of months and y represents the cost in dollars.

$$
\begin{aligned}
& \text { (1) } y=20 x+60 \\
& \text { (2) } y=40 x
\end{aligned}
$$

For how many months of membership is the cost the same at both gyms? What is the cost?

- Graph both lines by plotting points. Use the equation to find the y-value for each given value of x.
(2, \qquad) and (6, \qquad are solutions of equation (1).
($2, \ldots \quad$) and (6, \qquad are solutions of equation (2).

- Find the point where the lines intersect. The solution of the system is (\qquad , ___)).

Solution: A \qquad -month membership costs \qquad at both gyms.

Check your solution by substituting the coordinates of the point of intersection into each equation. If both equations are true, then the solution is correct.

Your Turn
 Now, use what you know to solve this problem.

1. What is the solution of the system of equations shown in the graph?

Solution of system: (\qquad
How do you know?

Check your solution.

How can you tell from a graph that a linear system has no solution?

This system of equations represents two friends making bracelets. The number of months is x, and the number of bracelets is y.
(1) $y=2 x+1$
(2) $y=2 x+2$

Try to solve the system. Will the friends ever have the same number of bracelets?

Graph both equations by plotting points.
($1, \ldots$) and ($3, \ldots$) are solutions of equation ${ }^{(1)}$.

($1, \ldots, 4$) and ($3, \ldots$) are solutions of equation (2).

These lines are parallel. They do not intersect.
So, this system has no solution.
The two friends will never have the same number of bracelets.

Both of equations (1) and (2) contain $2 x$. What does this mean in the context of this problem?

Fill in the blanks as you solve the problem.
Isabel has $\$ 20$. Caroline has $\$ 15$. Each girl is saving $\$ 10$ every month. This system shows the savings of each girl, where x represents the number of months and y is the amount of savings.
(1) $y=10 x+20$
(2) $y=10 x+15$

After how many months will they have the same amount of money?

- Graph both lines by plotting points.
(2, \qquad) and (5, \qquad) are solutions for equation (1).
(2, \qquad) and (5, \qquad) are solutions for equation (2).

■ Do the lines intersect? \qquad
They are \qquad

Solution: After how many months will they have the same amount of money?
\qquad

If two lines are parallel, the lines do not intersect, and there are no solutions of the system.

If two lines lie on top of each other, the lines coincide, and there are an infinite number of solutions of the system. Otherwise, there is exactly one solution of the system.

Your Turn

Now, use what you know to solve this problem.
2. Graph this system of equations to find the solution.
(1) $y={ }^{-} x+3$
(2) $y={ }^{-} x+5$

Solution of system:

How do you know?
\qquad
\qquad

PART THREE: Choose the Right Answer

Solve the problem. Then read why each answer choice is correct or not correct.

Check whether you chose the correct answer.
The lines intersect at $(20,30)$. So, $(20,30)$ is the solution of the system. The variable x represents the number of T-shirts, so the x-value at the intersection point is the number of T-shirts the companies must sell for their profits to be equal.

The x-value at the point of intersection is 20 .
So, the correct answer is (B).
Why are the other answer choices not correct?

(A) 12	This is the product of the x-coefficients in each equation.
(C) 30	The y-value in each ordered pair is the total profit, not the number of T-shirts sold.
(D) 50	This is the sum of the x - and y-values at the point of intersection.

Your Turn

Use the following information for problems 3 and 4.

The graph shows a system of equations.

3. How many solutions does the system have?
(A) 0 solutions
(B) 1 solution
(C) 2 solutions
(D) an infinite number of solutions
4. Which ordered pair represents a solution of the system?
(A) $(-2,0)$
(C) $(0,1)$
(B) $(-1,2)$
(D) $(2,-1)$
5. A company's production costs is given by $y=20 x+400$, where x is the number of items made and y is the total cost.
The company's money earned is given by $y=100 x$, where x is the number of items sold and y is the total money earned.

How many items must be sold for money earned to equal production costs?
(A) 5
(C) 450
(B) 20
(D) 500
6. If a system of equations has no solution, which is true?
(A) There is only one equation in the system.
(B) The graphs of the equations intersect.
(C) The graphs of the equations are parallel.
(D) The graphs of the equations coincide.

PART FOUR: Write the Best Answer

Study the model. It is a good example of a written answer.

Student Model

The system shows the cell phone usage for two friends, where x represents the number of days in the month that have passed, and y represents the number of minutes remaining for the month.

$$
\text { (1) } y=500-30 x
$$

$$
\text { (2) } y=400-30 x
$$

After how many days will both friends have the same number of minutes remaining? (If there is no solution, write "no solution.")

Show each step. Then explain how you found the solution.
Find two points for each equation.

\boldsymbol{x}	$\mathbf{5 0 0}-\mathbf{3 0 x}$	\boldsymbol{y}
5	$500-30(5)$	350
10	$500-30(10)$	200

\boldsymbol{x}	$400-30 x$	\boldsymbol{y}
5	$400-30(5)$	250
10	$400-30(10)$	100

Use the points to graph each line.
The lines are parallel.
They do not intersect at any point.

Solution: no solution

Number of Days
The student shows each step.

The student gives important details about how to find the solution.

Explanation:

I used each equation to find ordered pairs, and then I graphed the
two lines. I used the number of days on the x-axis and the number
of minutes remaining on the y-axis. The lines are parallel and do not
intersect, so there is no solution of the system.

The student uses the math words ordered pairs, graph, axis, parallel, and intersect.
7. The system shows the number of downloads for two videos, where x represents the number of days and y represents the total number of downloads.
(1) $y=100+50 x$
(2) $y=200+25 x$

After how many days will both videos have been downloaded the same number of times? (If there is no solution, write "no solution.") Show each step. Then explain how you found the solution.

x	$100+50 x$	y

x	$200+25 x$	y

Solution:

\qquad

Explanation:

\qquad
\qquad
\qquad
\qquad

PART FIVE: Prepare for a Test

As you solve systems of equations using graphs, remember to

- graph each equation and determine if the lines intersect.
- find the coordinates of the intersection point.
- think about what is represented by the variables x and y.

Solve each problem.

8. April graphs a system of equations that show the costs of two cell phone plans, where x is the number of minutes and y is the cost of the plan. The lines intersect at $(25,2.25)$. For how many minutes of use do the plans have the same cost?
(A) 2.25 min
(C) 9 min
(B) 2.5 min
(D) 25 min
9. If a system of linear equations has an infinite number of solutions, which must be true?
(A) There is only one equation in the system.
(B) The graphs of the equations intersect.
(C) The graphs of the equations are parallel.
(D) The graphs of the equations coincide.
10. The graphs of the equations in this system are parallel. Which is true?
(1) $y=3 x-5$
(2) $y=3 x+1$
(A) The system has no solution.
(B) The system has more than one solution.
(C) $(-5,1)$ is a solution of the system.
(D) Both equations have the same y-value when $x=3$.

Use the following information for problems 11 and 12.

The graph represents the cost of ordering multiple DVDs from two different websites.

11. What does the point $(1,20)$ represent?
(A) 1 DVD costs $\$ 20$ at both websites.
(B) 1 DVD costs $\$ 20$ at one website.
(C) 20 DVDs cost $\$ 1$ at both websites.
(D) 20 DVDs cost $\$ 1$ at one website.
12. What is the solution of the system?
(A) $(0,10)$
(B) $(2,4)$
(C) $(2,40)$
(D) no solution
13. The ordered pair $(5,20)$ is a solution of a system of linear equations. Which is true of the system?
(A) The graphs of the equations do not intersect.
(B) The system has 5 equations and their graphs intersect 20 times.
(C) The graphs of the equations intersect at the point $(5,20)$.
(D) The graphs of the equations intersect when the y-value is 5 .
14. The graph shows the weekly earnings for two salespeople, where x is the number of items sold and y is the weekly earnings.

Write a sentence to interpret the solution of the system.
\qquad
\qquad
15. What is the solution of this system? (If there is no solution, write "no solution.")
(1) $y=0.5 x+6$
(2) $y={ }^{-} x$

Show each step. Then explain how you found the solution.

Solution:

\qquad

Explanation:

\qquad
\qquad
\qquad

