The beginning of every unit in the Student Instruction Book gives students the opportunity to review mathematical and academic vocabulary and to access and build on familiar concepts that are important for the upcoming unit.

LOOK INSIDE TO LEARN ABOUT UPCOMING ENHANCEMENTS

✓ Problem Solving and Mathematical Discourse

✓ Enhanced Features to Support English Learners
 (based on recommendations from the Council of the Great City Schools English Language Development framework)
Teacher-Level Enhancements

Teacher Support

Lesson 0 provides teachers with a full guide on how to introduce the Think–Share–Compare Routine and the presentation slides provided for every lesson help facilitate the discussion.

Think–Share–Compare Routine
Engages students in solving problems and discussing their work, first with partners, then with the whole class. Teachers select from the Step-by-Step questions in the lessons to guide discussion during the Compare portion of the routine.

Language and Content Objectives are provided for every lesson to help teachers address students needs.

Language Objectives
- Compare the shapes of graphs using the terms skewed left, skewed right, symmetrical graph, peak, and outlier.
- Explain in writing the mathematical processes for finding measures of center and measures of variability using transition words and sequential language.
- Use the Lesson Vocabulary accurately in discussing and writing about variability in data sets.

Whole Class Instruction
Presentation slides are provided for every skill and strategy lesson in the Teacher Toolbox and follow the Think–Share–Compare Routine.

Step 1 Make Sense of the Problem
- What is the problem about?
- What are you trying to find out?
- What information is important?

Step 2 Solve and Support Your Thinking
- Solve the problem.
- Record your process.
- Solve another way.

Step 3 Discuss
- Share your thinking with a partner.

Discussion Starters
Use these to start sharing your thinking.
- I knew ... so I ...
Lesson-Level Enhancements

Language Support for All Students

Language routines, found in the Teacher Resource Book, enhance the overall Think–Share–Compare discourse routine and suggest an overall approach to teaching problems.

Integrating Language and Mathematics

Outlines language routines that can be used within any part of the Think–Share–Compare Routine. They offer consistent, repeatable structures to understand language and express ideas so students can focus on the mathematics they are learning. For example, “In your own words” is a routine that allows students to restate an idea they read or heard in their own words. It requires students to clarify understanding and use clear, specific language.

Integrating Language and Mathematics

Ready® Mathematics integrates language and mathematics instruction to support all students in learning. These research-based language routines provide powerful language-based activities through which students access, create, and express their growing mathematical understanding.

Three Reads

What It Is

A three-step routine for making sense of word problems or mathematical tasks.

How to Use It

- The task is read three times, each time with a different purpose:
 - What is this task about?
 - What do we need to do or find?
 - What quantities or information are important? How are they related?

The class comes to agreement on answers to each question.

When to Use It

When helping students make sense of a task.

Adaptations for language proficiency levels include:

- volunteers rather than the teacher reading the task.
- students reading the task silently or chorally for some readings.
- pairing or grouping students.
- having one partner read to the other.
- calling on several students or groups to respond to each question.

Why It Matters

Students make sense of the task by clarifying which quantities or pieces of information are important.

In Your Own Words

What It Is

A routine to confirm and clarify understanding, highlight ideas, encourage students to listen to one another, and lead students to use clear and specific language.

How to Use It

The teacher calls on students to restate an idea they have read or heard “in your own words.” The original speaker (or other students when processing text) decides whether the restatement is complete and correct. If not, students discuss together and then revise the restatement. Teachers may call on one or several students to restate the same idea.

When to Use It

After reading or during a discussion to:

- confirm understanding of written text or points in a discussion.
- focus attention on important ideas.
- let students hear an idea more than once and in more than one way.
- require that students listen to one another.
- give students time to process what was said or read.

Why It Matters

Expressing an idea in your own words requires comprehension and personal engagement. Hearing an idea stated more than once and in slightly different ways builds understanding. Restating an idea, confirming accuracy, and then refining the restatement builds the habit of listening carefully and speaking clearly and precisely.

Act It Out

What It Is

Support for making sense of written or spoken language.

How to Use It

Review tasks and explanatory text ahead of time. Look for contexts that are likely to be unfamiliar, particularly contexts that students must understand in order to make sense of the problem. Gather pictures or objects (realia) to help convey important parts of the context or concept. When presenting the problem, sketch, use gestures, or act out the problem, or call on students to do so.

When to Use It

Before introducing problems or tasks with contexts that are likely to be unfamiliar to your students.

Why It Matters

Act It Out helps all students make sense of word problems and explanatory text by clarifying unfamiliar or partially understood concepts and contexts.

English Language Development

Offers suggestions for scaffolding language use during the lesson so students at different levels of English proficiency can access the mathematics and express their own ideas.
Unit-Level Enhancements

Building on Familiar Concepts and Vocabulary

The beginning of every unit in the Student Instruction Book gives students the opportunity to review mathematical and academic vocabulary and to access and build on familiar concepts that are important for the upcoming unit.

Build Your Vocabulary
Provides opportunities for students to review previously taught mathematical or general academic vocabulary.

Real-World Connection
Asks students to make personal connections to real-world, familiar applications of the mathematics in the unit.

Concept Development
Provides collaborative visual activities so students with a range of mathematical and English language proficiencies can access and build upon familiar concepts that are prerequisite for the unit.

Preview Academic Vocabulary
Suggests activities through which students examine word meanings, word structure, and related words to create a word wall that students can refer to during the unit.

Real-World Connection
• Read aloud the Real-World Connection from the previous page and the directions for Read and Write for the Real-World Connection on this page as students follow along. To confirm understanding, ask students to explain what restaurant owners, city planners, and coaches do and why they might want to collect the information.
• Discuss ways in which the workers mentioned in Real-World Connection might collect information. Students may suggest surveys. Encourage them to think of other methods, such as counting the orders.

Term Meaning or Example

```
Term | Meaning or Example
--- | ---
data | survey, display, the mean of the data
```

Build Your Vocabulary
Below are words and phrases you may know. For each, write a meaning or example or write "I don't know yet." Share your answers with a partner. Together add meanings and examples that you discuss.

Concept Development
Here is data about the ages of people in two different groups. The mean age in both groups is 13. How are the groups alike and different? Write your ideas in the Venn diagram.

Group A
11, 13, 13, 14, 12, 14, 13, 13, 12, 15

Group B
2, 24, 22, 1, 26, 25, 2, 1, 26, 1

Group A and Group B

Most people are teenagers.

The mean age is 13 years.

No one is 13 years old.

• Post the term variability on a word wall or on an anchor chart for students to refer to throughout the unit. Have students add the word to their Math Journals.