FAQ: How do Oregon's Mathematics Standards align with i-Ready Standards Mastery?

Overview

This alignment document is designed to help educators determine the appropriate Standards Mastery assessments for Oregon Mathematics Standards.

About This Document

The following pages list Oregon Mathematics Standards that can be assessed using existing Standards Mastery assessments, the part of the standard that is covered by each assessment, the corresponding standard in i-Ready, and the test name as it is listed currently in i-Ready.

This document is organized by grade level (i.e., Grades 2-8). For each Standards Mastery test, there are two test forms available to choose from. These are shown as Form A and Form B within i-Ready Connect ${ }^{\text {TM }}$.

Use this document to identify a Standards Mastery assessment to assign based on the part of the Oregon Mathematics Standards you aim to assess. Please note, only Oregon Mathematics Standards with aligned Standards Mastery assessments are included in this document. You can flexibly assign assessments as appropriate. Jump to the standards you would like by clicking the hyperlinked text below.

Grade 2

Grade 3

Grade 4

Grade 5

Grade 6

Grade 7

Grade 8

To learn more about Standards Mastery in general and how it can be used, see the Educator Guide: Standards Mastery on i-ReadyCentral.com and connect with your i-Ready Partner Success team.

i-Ready Standards Mastery Oregon Mathematics Code Alignments

Grade 2			
If you need to assess on...		Then search i-Ready Connect for ...	
OR Standard Code	Portion of Standard Assessed	Standard	Test Name
Algebraic Reasoning: Operations			
2.OA.A. 1	Use addition and subtraction within [20] to solve one-step . . . problems in authentic contexts by using drawings and equations with a symbol for the unknown.	$\begin{aligned} & \text { RC.MATH.2-1 } \\ & \text { 2.OA.A.1_1 } \end{aligned}$	Solve One-Step Word Problems
2.0A.A. 1	Use addition and subtraction within [20] to solve . . . two-step problems in authentic contexts by using drawings and equations with a symbol for the unknown.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.OA.A.1_2 } \end{aligned}$	Solve Two-Step Word Problems
2.0A.A. 1	Use addition and subtraction [with two-digit numbers] to solve one-step word problems in authentic contexts by using drawings and equations with a symbol for the unknown.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.OA.A.1_3 } \end{aligned}$	Solve One-Step Word Problems with Two-Digit Numbers
2.OA.B. 2	Fluently add and subtract within 20 using accurate, efficient, and flexible strategies, [including using fact families], and algorithms based on place value and properties of operations.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.OA.B.2_1 } \end{aligned}$	Understand Mental Math Strategies (Fact Families)
2.OA.B. 2	Fluently add and subtract within 20 using accurate, efficient, and flexible strategies [including using the "make a ten" strategy], and algorithms based on place value and properties of operations.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.OA.B.2_2 } \end{aligned}$	Understand Mental Math Strategies (Make a Ten)
2.OA.C. 3	Determine whether a group up to 20 objects has an odd or even number by pairing objects or counting them by twos; record using drawings and equations including expressing an even number as a sum of two equal addends.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.OA.C. } 3 \end{aligned}$	Understand Even and Odd Numbers
2.OA.C. 4	Use addition to find the total number of objects arranged in	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.OA.C. } 4 \end{aligned}$	Add Using Arrays

	rectangular arrays with up to five rows and up to five columns; write an equation to express the		
	total as a sum of equal addends.		
	Understand 100 as a bundle of ten tens and that the three digits of a three-digit number represent amounts of hundreds,	RC.MATH.2- 2.NBT.A.1- tens, and ones.	2.NBT.A.2

	decompose tens or hundreds. Without having to count, mentally find 10 more . . . and 100 more . . . than a given threedigit number. Explain why strategies to add . . . work using properties of operations...		
2.NBT.B. 7 2.NBT.B. 8 2.NBT.B.9*	. . . subtract within 1000 using concrete or visual representations and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. Relate the strategy to a written method and explain why sometimes it is necessary to compose or decompose tens or hundreds. Without having to count, mentally find . . . 10 less and ... 100 less than a given three-digit number. Explain why strategies to ... subtract work using properties of operations...	RC.MATH.2- 2.NBT.B.7_2	Subtract Three-Digit Numbers
Geometric Reasoning and Measurement			
2.GM.A. 1	Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.G.A. } \end{aligned}$	Recognize and Draw Shapes
2.GM.A. 2	Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.G.A. } 2 \end{aligned}$	Understand Tiling in Rectangles
2.GM.A. 3	Partition circles and rectangles into two, three, or four equal parts. Recognize that equal parts of identical wholes need not have the same shape.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.G.A. } 3 \end{aligned}$	Understand Halves, Thirds, and Fourths in Shapes
2.GM.B. 4	Measure the length of an object by selecting and using appropriate measurement tools.	RC.MATH.2- 2.MD.A. 1	Understand Length and Measurement Tools
2.GM.B. 5	Measure the length of an object using two different length units	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.MD.A. } 2 \end{aligned}$	Understand Measurement with Different Units

	and describe how the measurements relate to the size of the unit chosen.		
2.GM.B. 6	Estimate lengths using units of inches, feet, . . . centimeters, and meters.	RC.MATH.2- 2.MD.A. 3	Understand Estimating Length
2.GM.B. 7	Measure two objects and determine the difference in their lengths in terms of a standard length unit.	RC.MATH.2- 2.MD.A. 4	Compare Lengths
2.GM.C. 8	Use addition and subtraction within 100 to solve problems in authentic contexts involving lengths that are given in the same units.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.MD.B.5- } \\ & \text { 2.MD.B. } 6 \end{aligned}$	Add and Subtract Lengths
2.GM.C. 9	Represent whole number lengths on a number line diagram; use number lines to find sums and differences within 100.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.MD.B.5- } \\ & \text { 2.MD.B. } 6 \end{aligned}$	Add and Subtract Lengths
2.GM.D. 10	Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.	RC.MATH.2- 2.MD.C. 7	Tell and Write Time to 5 Minutes
2.GM.D. 11	Solve problems in authentic contexts involving dollar bills, quarters, dimes, nickels, and pennies, using \$ (dollars) and c (cents) symbols appropriately.	RC.MATH.2- 2.MD.C. 8	Solve Word Problems Involving Money
Data Reasoning			
2.DR.A. 1	. . . Collect or consider data that can naturally answer questions by using measurements with whole-number units.	$\begin{aligned} & \text { RC.MATH.2- } \\ & \text { 2.MD.D. } 9 \end{aligned}$	Understand Reading and Making Line Plots
2.DR.B. 2	Analyze data with a single-unit scale and interpret information presented to answer investigative questions.	RC.MATH.2- 2.MD.D. 10	Draw and Use Bar Graphs and Picture Graphs

Grade 3

If you need to assess on...
 Then search i-Ready Connect for . .
 OR Standard

Code

Portion of Standard Assessed

Algebraic Reasoning: Operations

Algebraic Reasoning: Operations			
3.OA.A. 1	Represent and interpret multiplication of two factors as repeated addition of equal groups.	RC.MATH.3- 3.OA.A. 1	Understand the Meaning of Multiplication
3.OA.A. 2	Represent and interpret wholenumber quotients as dividing an amount into equal sized groups.	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.OA.A. } 2 \end{aligned}$	Understand the Meaning of Division
3.OA.A. 3	Use multiplication and division within 100 to solve problems in authentic contexts involving equal groups, arrays, and/or measurement quantities.	RC.MATH.3- 3.OA.A. 3	Solve One-Step Word Problems Using Multiplication and Division
3.OA.A. 4	Determine the unknown number in a multiplication or division equation relating three whole numbers by applying the understanding of the inverse relationship of multiplication and division.	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.OA.A. } 4 \end{aligned}$	Multiplication and Division Facts: Part 1
3.OA.B. 5	Apply properties of operations as strategies to multiply [using order and grouping] . . .	RC.MATH.3- 3.OA.B.5_1	Use Order and Grouping to Multiply
3.OA.B. 5	Apply properties of operations as strategies to multiply [by splitting numbers]...	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.OA.B.5_2 } \end{aligned}$	Split Numbers to Multiply
3.OA.B. 6	Understand division as an unknown factor in a multiplication problem.	RC.MATH.3- $\text { 3.OA.B. } 6$	Understand How Multiplication and Division Are Connected
3.0A.C. 7	Fluently multiply and divide within 100 using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.	RC.MATH.3- $\text { 3.OA.C. } 7$	Multiplication and Division Facts: Part 2
3.OA.D. 8	Solve two-step problems in authentic contexts that use addition, subtraction, multiplication, and division in equations with a letter standing for the unknown quantity.	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.OA.D. } \end{aligned}$	Model and Solve Two-Step Word Problems Using the Four Operations
3.OA.D. 9	Identify and explain arithmetic patterns using properties of	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.OA.D. } 9 \end{aligned}$	Understand Patterns

operations, including patterns in the addition table or multiplication table.

Numeric Reasoning: Base Ten Arithmetic

Numeric Reasoning: Base Ten Arithmetic			
3.NBT.A. 1	Use place value understanding to round whole numbers within 1000 to the nearest 10 or 100 .	RC.MATH.3- 3.NBT.A. 1	Use Place Value to Round Numbers
3.NBT.A. 2	Fluently add and subtract within 1000 using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.	RC.MATH.3- 3.NBT.A. 2	Use Place Value to Add and Subtract
3.NBT.A. 3	Find the product of one-digit whole numbers by multiples of 10 in the range 10-90, such as 9 $x 80$. Students use a range of strategies and algorithms based on place value and properties of operations.	RC.MATH.3- 3.NBT.A. 3	Use Place Value to Multiply
Numeric Reasoning: Fractions			
3.NF.A. 1	Understand the concept of a unit fraction and explain how multiple copies of a unit fraction form a nonunit fraction.	RC.MATH.3- 3.NF.A. 1	Understand What a Fraction Is
3.NF.A. 2	Understand a fraction as a number on the number line; Represent fractions on a number line diagram.	RC.MATH.3- 3.NF.A. 2	Understand Fractions on a Number Line
3.NF.A. 3	[Understand] equivalence of fractions in special cases.	RC.MATH.3- 3.NF.A.3a	Understand Equivalent Fractions
3.NF.A. 3	Explain equivalence of fractions in special cases [and find equivalent fractions]...	RC.MATH.3- 3.NF.A.3b- 3.NF.A.3c	Find Equivalent Fractions
3.NF.A. 3	. . . compare fractions by reasoning about their size.	RC.MATH.3- 3.NF.A.3d	Understand Comparing Fractions
Geometric Reasoning and Measurement			
3.GM.A. 1	Understand that shapes in different categories may share attributes and that shared attributes can define a larger category.	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.G.A.1_1 } \end{aligned}$	Understand Properties of Shapes
3.GM.A. 2	Partition shapes into parts with equal areas and express the area of each part as a unit fraction of the whole.	$\begin{aligned} & \text { RC.MATH.3- } \\ & \text { 3.G.A. } 2 \end{aligned}$	Divide Shapes into Parts with Equal Areas
3.GM.B. 3	Tell [and] write . . . time to the nearest minute.	RC.MATH.3- 3.MD.A.1_1	Tell and Write Time to the Minute
3.GM.B. 3	... measure time to the nearest minute. Solve problems in	RC.MATH.3- 3.MD.A.1_2	Solve Problems about Time

	authentic contexts that involve addition and subtraction of time intervals in minutes.		
	Measure, estimate, and solve problems in authentic contexts that involve liquid volumes . . of objects using standard units of . liters (I).	RC.MATH.3- 3.MD.A.2_1	Liquid Volume
	Measure, estimate, and solve problems in authentic contexts that involve . . masses of objects using standard units of grams (g), kilograms (kg) . .	RC.MATH.3- 3.MD.A.2_2	Mass
	Recognize area as an attribute of plane figures and understand concepts of area measurement presented in authentic contexts by tiling and counting unit	RC.MATH.3- squares.	3.MD.C.6

Grade 4

If you need to assess on...

Then search i-Ready Connect for . . .

OR Standard Code	Portion of Standard Assessed	Standard	Test Name
Algebraic Reasoning: Operations			
4.OA.A. 1	Interpret a multiplication equation as comparing quantities. Represent verbal statements of multiplicative comparisons as equations.	$\begin{aligned} & \text { RC.MATH.4- } \\ & \text { 4.OA.A. } 1 \end{aligned}$	Understand Multiplication
4.OA.A. 2	Multiply or divide to solve problems in authentic contexts involving multiplicative comparison, distinguishing multiplicative comparison from additive comparison.	RC.MATH.4- $\text { 4.OA.A. } 2$	Multiplication and Division in Word Problems
4.OA.A. 3	Solve multistep problems in authentic contexts using whole numbers and having wholenumber answers using the four operations, including problems in which remainders must be interpreted.	$\begin{aligned} & \text { RC.MATH.4- } \\ & \text { 4.OA.A.3_2 } \end{aligned}$	Solve Multi-Step Problems
4.OA.B. 4	Find all factor pairs for a whole number in the range 1-100. Determine whether a given whole number in the range of $1-$ 100 is a multiple of a given onedigit number and whether it is prime or composite.	$\begin{aligned} & \text { RC.MATH.4- } \\ & \text { 4.OA.B. } 4 \end{aligned}$	Multiples and Factors
4.OA.C. 5	Analyze a number, visual, or contextual pattern that follows a given rule.	$\begin{aligned} & \text { RC.MATH.4- } \\ & \text { 4.OA.C. } 5 \end{aligned}$	Number and Shape Patterns
Numeric Reasoning: Base Ten Arithmetic			
4.NBT.A. 1	Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right.	RC.MATH.4- 4.NBT.A.1- 4.NBT.A.2_1	Place Value
4.NBT.A. 2	Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form.	RC.MATH.4- 4.NBT.A.1- 4.NBT.A.2_1	Place Value
4.NBT.A. 2	... Use understandings of place value within these forms to compare two multi-digit	RC.MATH.4- 4.NBT.A.2_2	Compare Whole Numbers

	numbers using $>$, $=$, and $<$ symbols.		
4.NBT.A. 3	Use place value understanding to round multi-digit whole numbers to any place.	RC.MATH.44.NBT.A. 3	Round Whole Numbers
4.NBT.B. 4	Fluently add and subtract multidigit whole numbers using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.	RC.MATH.4- 4.NBT.B. 4	Add and Subtract Whole Numbers
4.NBT.B. 5	Use representations and strategies to multiply a whole number of up to four digits by a one-digit number, and a twodigit number by a two-digit number using strategies based on place value and the properties of operations.	RC.MATH.44.NBT.B. 5	Multiply Whole Numbers
4.NBT.B. 6	Use representations and strategies to find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division.	RC.MATH.4- 4.NBT.B. 6	Divide Whole Numbers
Numeric Reasoning: Fractions			
4.NF.A. 1	Use visual fraction representations to recognize, generate, and explain relationships between equivalent fractions.	RC.MATH.44.NF.A. 1	Equivalent Fractions
4.NF.A. 2	Compare two fractions with different numerators and/or different denominators, record the results with the symbols >, $=$, or $<$, and justify the conclusions.	RC.MATH.44.NF.A. 2	Compare Two Fractions
4.NF.B. 3	Understand a fraction (a/b) as the sum (a) of fractions of the same denominator ($1 / \mathrm{b}$).	RC.MATH.4- 4.NF.B.3a- 4.NF.B.3b	Understand Fraction Addition and Subtraction
4.NF.B. 3	... Solve problems in authentic contexts involving addition and subtraction of fractions referring to the same whole and having like denominators.	RC.MATH.4- 4.NF.B.3c- 4.NF.B.3d	Add and Subtract Fractions and Mixed Numbers

4.NF.B. 4	Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.	RC.MATH.4- 4.NF.B.4a- 4.NF.B.4b	Understand Fraction Multiplication
4.NF.B. 4	... Represent and solve problems in authentic contexts involving multiplication of a fraction by a whole number.	RC.MATH.4- 4.NF.B.4c	Multiply Fractions
4.NF.C. 6	Use and interpret decimal notation for fractions with denominators 10 or 100.	RC.MATH.4- 4.NF.C. 6	Relate Decimals and Fractions
4.NF.C. 7	Compare two decimals to hundredths place by reasoning about their size, and record the comparison using the symbols $>$, $=$, or $<$.	RC.MATH.44.NF.C. 7	Compare Decimals
Geometric Reasoning and Measurement			
4.GM.A. 1	Explore, investigate, and draw points, lines, line segments, rays, angles, and perpendicular and parallel lines. Identify these in two-dimensional figures.	RC.MATH.44.G.A. 1	Points, Lines, Rays, and Angles
4.GM.A. 2	Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size.	$\begin{aligned} & \text { RC.MATH.4- } \\ & \text { 4.G.A. } 2 \end{aligned}$	Classify Two-Dimensional Figures Using Side Lengths and Angle Measures
4.GM.A. 3	Recognize and draw a line of symmetry for a two-dimensional figure.	RC.MATH.44.G.A. 3	Symmetry
4.GM.B. 4	Know relative sizes of measurement units and express measurements in a larger unit in terms of a smaller unit.	RC.MATH.4- 4.MD.A. 1	Convert Measurements
4.GM.B. 5	Apply knowledge of the four operations and relative size of [time and money] measurement units to solve problems in authentic contexts that include familiar fractions or decimals.	RC.MATH.4- 4.MD.A.2_1	Time and Money
4.GM.B. 5	Apply knowledge of the four operations and relative size of [length, liquid volume, and mass] measurement units to solve problems in authentic contexts that include familiar fractions or decimals.	$\begin{aligned} & \text { RC.MATH.4- } \\ & \text { 4.MD.A. } 2 _2 \end{aligned}$	Length, Liquid Volume, and Mass

4.GM.B. 6	Apply the area and perimeter formulas for rectangles in authentic contexts and mathematical problems.	RC.MATH. 4 4.MD.A. 3	Perimeter and Area
4.GM.C. 7	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint. Understand and apply concepts of angle measurement.	RC.MATH.4- 4.MD.C.5- 4.MD.C. 6	Measure Angles
4.GM.C. 8	Measure angles in wholenumber degrees using a protractor. Sketch angles of specified measure.	RC.MATH. 4 4.MD.C.5- 4.MD.C. 6	Measure Angles
4.GM.C. 9	Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts.	RC.MATH. 4 4.MD.C. 7	Add and Subtract with Angles
Data Reasoning			
4.DR.B. 2	Analyze line plots to display a distribution of numerical measurement data, which include displays of data sets of fractional measurements with the same denominator. Interpret information presented to answer investigative questions.	RC.MATH.4- 4.MD.B. 4	Line Plots

Grade 5

If you need to assess on... Then search i-Ready Connect for ...

Standard
 Test Name

Algebraic Reasoning: Operations			
5.OA.A. 1	Write and evaluate numerical expressions that include parentheses.	$\begin{aligned} & \text { RC.MATH.5- } \\ & \text { 5.OA.A.1- } \\ & \text { 5.OA.A.2 } \end{aligned}$	Evaluate and Write Expressions
5.OA.A. 2	Write expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.	RC.MATH.5- 5.OA.A.1- 5.OA.A. 2	Evaluate and Write Expressions
5.OA.B. 3	Generate two numerical patterns using two given rules. Identify and analyze relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns and graph them on a coordinate plane.	RC.MATH.5- 5.OA.B. 3	Analyze Patterns and Relationships
Numeric Reasoning: Base Ten Arithmetic			
5.NBT.A. 1	Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	RC.MATH.5- 5.NBT.A. 1	Place Value Understanding
5.NBT.A. 2	Use whole number exponents to denote powers of 10 and explain the patterns in placement of digits that occur when multiplying and/or dividing whole numbers and decimals by powers of 10 .	RC.MATH.5- 5.NBT.A. 2	Understand Powers of Ten
5.NBT.A. 3	Read [and] write . . . decimals to thousandths.	RC.MATH.5- 5.NBT.A.3a	Read and Write Decimals
5.NBT.A. 3	. . . compare decimals to thousandths.	RC.MATH.5- 5.NBT.A.3b	Compare Decimals to Thousandths
5.NBT.A. 4	Use place value understanding to round decimals to any place.	RC.MATH.5- 5.NBT.A. 4	Round Decimals
5.NBT.B. 5	Fluently multiply multi-digit whole numbers using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.	RC.MATH.5- 5.NBT.B. 5	Multiply Whole Numbers with the Standard Algorithm

5.NBT.B.6	Use a variety of representations and strategies to find whole- number quotients of whole numbers with up to four-digit dividends and two-digit divisors.	RC.MATH.5- 5.NBT.B.6	Divide Whole Numbers with Two- Digit Divisors
	Use a variety of representations and strategies to add [and] subtract . . decimals to hundredths. Relate the strategy to a written method and explain	5.NBT.B.7_1	Add and Subtract Decimals
the reasoning used.			

	fractional products as rectangular areas.		
5.NF.B. 5	Apply and extend previous understandings of multiplication and division to represent and calculate multiplication and division of fractions. Interpret multiplication as scaling (resizing) by comparing the size of products of two factors.	RC.MATH.5- 5.NF.B. 5	Understand Multiplication as Scaling
5.NF.B. 6	Solve problems in authentic contexts involving multiplication of common fractions and mixed numbers.	RC.MATH.5- 5.NF.B. 6	Multiply Fractions in Word Problems
5.NF.B. 7	Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions...	RC.MATH.5- 5.NF.B.7a- 5.NF.B.7b	Understand Division with Unit Fractions
5.NF.B. 7	. . . divide unit fractions by whole numbers and whole numbers by unit fractions, including solving problems in authentic contexts.	RC.MATH.5- 5.NF.B.7c	Divide Unit Fractions in Word Problems
Geometric Reasoning and Measurement			
5.GM.A. 1	Graph and name coordinate points in the first quadrant using the standard (x, y) notation. Understand the coordinate points values represent the distance traveled along the horizontal x -axis and vertical y axis.	RC.MATH.5- $\text { 5.G.A.1-5.G.A. } 2$	Understand and Graph Points in the Coordinate Plane
5.GM.A. 2	Represent authentic contexts and mathematical problems by graphing points in the first quadrant of the coordinate plane. Interpret the meaning of the coordinate values based on the context of a given situation.	RC.MATH.5- 5.G.A.1-5.G.A. 2	Understand and Graph Points in the Coordinate Plane
5.GM.B. 3	... explain the relationship across and within different categories of these figures.	$\begin{aligned} & \text { RC.MATH.5- } \\ & \text { 5.G.B. } 3 \end{aligned}$	Understand Properties of TwoDimensional Figures
5.GM.B. 3	Classify two-dimensional figures within a hierarchy based on their geometrical properties...	$\begin{aligned} & \text { RC.MATH.5- } \\ & \text { 5.G.B. } 4 \end{aligned}$	Classify Two-Dimensional Figures by Properties
5.GM.C. 4	Convert between different-sized standard measurement units within a given measurement system.	RC.MATH.5- 5.MD.A.1_1	Convert Measurement Units

5.GM.C. 4	. . . Use . . . conversions [between different-sized standard measurement units within a given measurement system] in solving multi-step problems in authentic contexts.	RC.MATH.5- 5.MD.A.1_2	Solve Word Problems Involving Conversions
5.GM.D. 5	Recognize that volume is a measurable attribute of solid figures.	RC.MATH.5- 5.MD.C.3- 5.MD.C. 4	Find Volume Using Unit Cubes
5.GM.D. 6	Measure the volume of a rectangular prism by counting unit cubes using standard and nonstandard units.	RC.MATH.5- 5.MD.C.3- 5.MD.C. 4	Find Volume Using Unit Cubes
5.GM.D. 7	Relate volume of rectangular prisms to the operations of multiplication and addition. Solve problems in authentic contexts involving volume using a variety of strategies.	RC.MATH.5- 5.MD.C.5a- 5.MD.C.5b	Find Volume Using Formulas
Data Reasoning			
5.DR.B. 2	Analyze graphical representations and describe the distribution of the numerical data through line plots or categorical data through bar graphs. Interpret information presented to answer investigative questions.	RC.MATH.5- 5.MD.B. 2	Make Line Plots and Interpret Data

Grade 6

If you need to assess on...
Then search i-Ready Connect for ..
OR Standard Code

Portion of Standard Assessed

Standard
Test Name

Algebraic Reasoning: Expressions and Equations			
6.AEE.A. 1	Write and evaluate numerical expressions involving wholenumber. . . exponents.	RC.MATH.66.EE.A. 1	Numerical Expressions with Exponents
6.AEE.A. 2	Write [and] read ... expressions in which letters stand for numbers. Apply knowledge of common mathematical terms to move between the verbal and mathematical forms of an expression, including expressions that arise from authentic contexts.	RC.MATH.6- 6.EE.A.2a- 6.EE.A.2b	Write Expressions
6.AEE.A. 2	. . . evaluate expressions in which letters stand for numbers.	RC.MATH.6- 6.EE.A.2c	Evaluate Expressions
6.AEE.A. 3	Apply the properties of operations to generate equivalent expressions and to determine when two expressions are equivalent.	RC.MATH.6-6.EE.A.3-6.EE.A. 4	Equivalent Expressions
6.AEE.B. 4	Understand solving an equation or inequality as a process of answering which values from a specified set, if any, make the equation or inequality true. Use substitution to determine which number(s) in a given set make an equation or inequality true.	RC.MATH.6- 6.EE.B.5_1- 6.EE.B. 6	Solve Equations
6.AEE.B. 5	Use variables to represent numbers and write expressions when solving problems in authentic contexts.	RC.MATH.6- 6.EE.B.5_1- 6.EE.B. 6	Solve Equations
6.AEE.B. 6	Write and solve equations of the form $x+p=q$ and $p x=q$ in problems that arise from authentic contexts for cases in which p, q, and x are all nonnegative rational numbers.	RC.MATH.6- 6.EE.B.5_1- 6.EE.B. 6	Solve Equations
6.AEE.B. 7	Write inequalities of the form $x>$ c and $\mathrm{x}<\mathrm{c}$ to represent constraints or conditions to solve problems in authentic contexts. Describe and graph on a number	RC.MATH.6- 6.EE.B.5_2- 6.EE.B. 8	Solve Inequalities

	line solutions of inequalities of the form $\mathrm{x}>\mathrm{c}$ and $\mathrm{x}<\mathrm{c}$.		
6.AEE.C. 8	Use variables to represent and analyze two quantities to solve problems in authentic contexts. Including those that change in relationship to one another; write an equation to express one quantity in terms of the other quantity.	RC.MATH.66.EE.C. 9	Dependent and Independent Variables
Proportional Reasoning: Ratios and Proportions			
6.RP.A. 1	Understand the concept of a ratio in authentic contexts, and use ratio language to describe a ratio relationship between two quantities.	RC.MATH.66.RP.A. 1	Ratios
6.RP.A. 2	Understand the concept of a unit rate in authentic contexts and use rate language in the context of a ratio relationship.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.RP.A. } 2 \end{aligned}$	Understand Unit Rate
6.RP.A. 3	Use ratio and rate reasoning to solve problems in authentic contexts that use equivalent ratios . . . and/or measurement units.	RC.MATH.6- 6.RP.A.3a	Equivalent Ratios
6.RP.A. 3	Use ratio and rate reasoning to solve problems in authentic contexts that use . . . unit rates . . and/or measurement units.	RC.MATH.6- 6.RP.A.3b- 6.RP.A.3d	Solve Problems with Unit Rates
6.RP.A. 3	Use ratio and rate reasoning to solve problems in authentic contexts that use . . . percents . .	RC.MATH.6- 6.RP.A.3c	Solve Problems with Percent
Numeric Reasoning: Number Systems			
6.NS.A. 1	. . . interpret . . . quotients of fractions to solve problems in authentic contexts involving division of fractions by fractions.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.NS.A.1_1 } \end{aligned}$	Understand Division with Fractions
6.NS.A. 1	Represent . . . and compute quotients of fractions to solve problems in authentic contexts involving division of fractions by fractions.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.NS.A.1_2 } \end{aligned}$	Divide with Fractions
6.NS.B. 2	Fluently divide multi-digit numbers using accurate, efficient, and flexible strategies and algorithms based on place value and properties of operations.	RC.MATH.66.NS.B. 2	Divide Multi-Digit Numbers

6.NS.B. 3	Fluently add [and] subtract . . . positive rational numbers using accurate, efficient, and flexible strategies and algorithms.	RC.MATH.6- 6.NS.B.3_1	Add and Subtract Multi-Digit Decimals
6.NS.B. 3	Fluently . . . multiply and divide positive rational numbers using accurate, efficient, and flexible strategies and algorithms.	RC.MATH.6- 6.NS.B.3_2	Multiply and Divide Decimals
6.NS.B. 4	Determine greatest common factors and least common multiples using a variety of strategies. Apply the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor.	RC.MATH.6- 6.NS.B. 4	Common Factors and Multiples
6.NS.C. 5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values. Use positive and negative numbers to represent quantities in authentic contexts, explaining the meaning of zero in each situation.	RC.MATH.6- 6.NS.C.5- 6.NS.C.6a	Positive and Negative Numbers
6.NS.C. 6	Represent a rational number as a point on the number line.	RC.MATH.6- 6.NS.C.5- 6.NS.C.6a	Positive and Negative Numbers
6.NS.C. 6	. . . Extend number line diagrams and coordinate axes to represent points on the line and in the coordinate plane with negative number coordinates.	RC.MATH.6- 6.NS.C.6b- 6.NS.C.6c_2	Ordered Pairs
6.NS.C. 7	Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. Write, interpret, and explain statements of order for rational numbers and absolute value in authentic applications.	RC.MATH.66.NS.C. 7	Absolute Value and Ordering Numbers
6.NS.C. 8	Graph points in all four quadrants of the coordinate plane to solve problems in authentic contexts. Include use of coordinates and absolute value to find distances between points with the same first	RC.MATH.6- 6.NS.C. 8	Solve Problems Using the Coordinate Plane

coordinate or the same second coordinate.

Geometric Reasoning and Measurement			
6.GM.A. 1	Find the area of triangles, quadrilaterals, and other polygons by composing into rectangles or decomposing into triangles and other shapes. Apply these techniques to solve problems in authentic contexts.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.G.A. } \end{aligned}$	Area of Polygons
6.GM.A. 2	Find the volume of a right rectangular prism with fractional edge lengths by filling it with unit cubes of appropriate unit fraction edge lengths. Connect and apply to the formulas $V=1 \mathrm{w}$ h and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths to solve problems in authentic contexts.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.G.A. } 2 \end{aligned}$	Volume
6.GM.A. 3	Draw polygons in the four quadrant coordinate plane given coordinates for the vertices and find the length of a side. Apply these techniques to solve problems in authentic contexts.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { G.G.A. } \end{aligned}$	Polygons in the Coordinate Plane
6.GM.A. 4	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures, including those from authentic contexts.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.G.A. } 4 \end{aligned}$	Nets and Surface Area
Data Reasoning			
6.DR.A. 1	Formulate and recognize statistical investigative questions as those that anticipate changes in descriptive data related to the question and account for it in the answers.	RC.MATH.6- 6.SP.A.1-6.SP.A. 2	Statistical Questions
6.DR.B. 2	... identify and describe the characteristics of numerical data sets using quantitative measures of center and variability.	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.SP.A.1-6.SP.A. } 2 \end{aligned}$	Statistical Questions
6.DR.C. 3	[Create and] analyze data representations and describe measures of center and	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.SP.B. } 4 \end{aligned}$	Display Data

	variability of quantitative data using appropriate displays.		
6.DR.C. 3	. . . describe measures of center and variability of quantitative data...	$\begin{aligned} & \text { RC.MATH.6- } \\ & \text { 6.SP.A. } 3 \end{aligned}$	Measures of Center and Variability
6.DR.D. 4	Interpret quantitative measures of center to describe differences between groups from data collected to answer investigative questions.	RC.MATH.66.SP.A. 3	Measures of Center and Variability

Grade 7

If you need to assess on... \quad Then search i-Ready Connect for...
OR Standard

Algebraic Reasoning: Expressions and Equations

Algebraic Reasoning: Expressions and Equations			
7.AEE.A. 1	Identify and write equivalent expressions with rational numbers by applying associative, commutative, and distributive properties.	RC.MATH.7- 7.EE.A. 1	Equivalent Linear Expressions
7.AEE.A. 2	Understand that rewriting an expression in different forms in a contextual problem can show how quantities are related.	RC.MATH.7- 7.EE.A. 2	Writing Linear Expressions
7.AEE.B. 3	Write and solve problems in authentic contexts using expressions and equations with positive and negative rational numbers in any form. Contexts can be limited to those that can be solved with . . . two-step linear equations.	RC.MATH.7- 7.EE.B.3- 7.EE.B.4a	Solve Problems with Equations
7.AEE.B. 4	Use variables to represent quantities and construct oneand two-step linear inequalities with positive rational numbers to solve authentic problems by reasoning about the quantities.	RC.MATH.7- 7.EE.B.4b	Solve Problems with Inequalities
Numeric Reasoning: Ratios and Proportions			
7.RP.A. 1	Solve problems in authentic contexts involving unit rates associated with ratios of fractions.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.RP.A. } 1 \end{aligned}$	Ratios Involving Complex Fractions
7.RP.A. 2	Recognize . . . proportional relationships between quantities in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. Identify the constant of proportionality (unit rate) within various representations.	RC.MATH.7- 7.RP.A.2a- 7.RP.A.2b	Understand Proportional Relationships
7.RP.A. 2	... represent proportional relationships between quantities in . . . graphs, equations, . . . and verbal descriptions of proportional relationships. . .	RC.MATH.7- 7.RP.A.2c- 7.RP.A.2d	Equations for Proportional Relationships

7.RP.A. 3	Use proportional relationships to solve ratio and percent problems in authentic contexts [including simple interest, tax, markups and markdown, gratuities and commissions, and fees].	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.RP.A.3_1 } \end{aligned}$	Applications of Percents
7.RP.A. 3	Use proportional relationships to solve ratio and percent problems in authentic contexts [involving percent increase and decrease and percent error].	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.RP.A.3_2 } \end{aligned}$	Percent of Change and Percent of Error
7.RP.B. 4	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Represent probabilities as fractions, decimals, and percents.	RC.MATH.7- 7.SP.C.5-7.SP.C. 6	Experimental Probability
7.RP.B. 5	Use experimental data and theoretical probability to make predictions. Understand the probability predictions may not be exact.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.SP.C.5-7.SP.C. } 6 \end{aligned}$	Experimental Probability
7.RP.B. 6	Develop a probability model and use it to find probabilities of events. Compare theoretical and experimental probabilities and explain possible sources of discrepancy if any exists.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.SP.C. } 7 \end{aligned}$	Probability Models
7.RP.B. 7	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.SP.C. } 8 \end{aligned}$	Probability of Compound Events
Numeric Reasoning: Number Systems			
7.NS.A. 1	. . . extend previous understandings of addition. and absolute value to add . . . rational numbers in authentic contexts.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.NS.A.1a- } \\ & \text { 7.NS.A.1b } \end{aligned}$	Understand Addition of Positive and Negative Rational Numbers
7.NS.A. 1	. . . extend previous understandings of . . . subtraction and absolute value to . . . subtract rational numbers in authentic contexts. Understand subtraction as adding the additive inverse, $p-q=p+(-q)$.	RC.MATH.77.NS.A.1c	Understand Subtraction of Positive and Negative Rational Numbers
7.NS.A. 1	Apply . . . previous understandings of addition, subtraction, and absolute value	RC.MATH.77.NS.A.1d	Add and Subtract Positive and Negative Rational Numbers

	to add and subtract rational numbers in authentic contexts.		
7.NS.A. 2	. . . extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. Interpret operations of rational numbers solving problems in authentic contexts.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.NS.A.2a- } \\ & \text { 7.NS.A.2b } \end{aligned}$	Understand Multiplication and Division of Rational Numbers
7.NS.A. 2	Apply . . . previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	RC.MATH.7- 7.NS.A.2c	Multiply and Divide Rational Numbers
7.NS.A. 3	Understand that equivalent rational numbers can be written as fractions [and] decimals . . .	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.NS.A.2d } \end{aligned}$	Terminating and Repeating Decimals
Geometric Reasoning and Measurement			
7.GM.A. 1	Solve problems involving scale drawings of geometric figures. Reproduce a scale drawing at a different scale and compute actual lengths and areas from a scale drawing.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.A. } 1 \end{aligned}$	Scale Drawings
7.GM.A. 2	Draw triangles from three measures of angles or sides. Understand the possible side lengths and angle measures that determine a unique triangle, more than one triangle, or no triangle.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.A. } 2 \end{aligned}$	Understand Conditions for Drawing Triangles
7.GM.B. 3	Understand the relationship between area and circumference of circles. Choose and use the appropriate formula to solve problems with radius, diameter, circumference, and area of circles.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.B. } \end{aligned}$	Area and Circumference of a Circle
7.GM.B.4	Apply facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to determine an unknown angle in a figure.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.B. } 5 \end{aligned}$	Problem Solving with Angles
7.GM.B. 5	Solve problems in authentic contexts involving two- . . . dimensional figures. Given formulas, calculate area.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.B.6_1 } \end{aligned}$	Area of Composed Figures
7.GM.B. 5	Solve problems in authentic contexts involving . . . three-	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.B.6_2 } \end{aligned}$	Volume of Solids

	dimensional figures. Given formulas, calculate . . . volume.		
7.GM.B. 5	Solve problems in authentic contexts involving . . . threedimensional figures. Given formulas, calculate ... surface area.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.G.B.6_3 } \end{aligned}$	Surface Area of Solids
Data Reasoning			
7.DR.A. 1	Formulate . . . that a sample is valid only if the sample is representative of that population.	RC.MATH.7- $\text { 7.SP.A.1-7.SP.A. } 2$	Make Statistical Inferences Using Random Samples
7.DR.B. 2	Collect or consider data from a random sample to compare and draw inferences about a population with an unknown characteristic of interest.	RC.MATH.7- 7.SP.A.1-7.SP.A. 2	Make Statistical Inferences Using Random Samples
7.DR.C. 3	Analyze two data distributions visually to compare multiple measures of center and variability.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.SP.B. } 3 \end{aligned}$	Use Mean and Mean Absolute Deviation to Compare Data
7.DR.D. 4	Interpret measures of center and measures of variability for numerical data from random samples to compare between two populations and to answer investigative questions.	$\begin{aligned} & \text { RC.MATH.7- } \\ & \text { 7.SP.B. } 4 \end{aligned}$	Use Measures of Center and Variability to Compare Data

Grade 8

If you need to assess on...
OR Standard Code
8.AEE.A. 2

| 8.AEE.A. 3 | $\begin{array}{l}\text { Estimate very large or very small } \\ \text { quantities using scientific }\end{array}$ |
| :--- | :--- | notation with a single digit times an integer power of ten.

8.AEE.A. 4	Perform operations with numbers expressed in scientific notation.	RC.MATH.8- 8.EE.A. 4	Operations and Scientific Notation
8.AEE.B. 5	Graph proportional relationships in authentic contexts. Interpret the unit rate as the slope of the graph, and compare two different proportional relationships represented in different ways.	RC.MATH.8- 8.EE.B. 5	Represent Proportional Relationships
8.AEE.B. 6	Write the equation for a line in slope intercept form $y=m x+b$, where m and b are rational numbers, and explain in context why the slope m is the same between any two distinct points.	RC.MATH.8- 8.EE.B. 6	Understand the Slope-Intercept Equation for a Line
8.AEE.C. 7	[Determine which] . . . line	RC.MATH.8-	f Linear Eq

[Determine which] . . . linear equations with one variable [have one solution, infinitely many solutions, or no solutions], including equations with rational number coefficients, with the variable on both sides, or whose solutions require using the distributive property and/or combining like terms.
8.AEE.C. 7

Solve linear equations with one variable including equations with rational number coefficients, with the variable on both sides, or whose solutions require using the distributive property and/or combining like terms.

Then search i-Ready Connect for . .
Portion of Standard Assessed

Algebraic Reasoning: Expressions and Equations

Represent solutions to equations using square root and cube root symbols. Perform operations with numbers expressed in scientific notation. in authentic contexts. Interpret the unit rate as the slope of the graph, and compare two different proportional relationships represented in different ways.
slope intercept form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$, where m and b are rational numbers, and explain in context why the slope m is the same between any two distinct points.
8.AEE.C. 7

8.AEE.C. 8	Find, analyze, and interpret solutions to pairs of simultaneous linear equations using graphs or tables.	RC.MATH.8- 8.EE.C.8a- 8.EE.C.8b	Solve Systems of Equations Algebraically
Algebraic Reasoning: Functions			
8.AFN.A. 2	Compare the properties of two functions represented algebraically, graphically, numerically in tables, or verbally by description.	RC.MATH.88.F.A. 2	Compare Functions
8.AFN.A. 3	Understand and identify linear functions, whose graph is a straight line, and identify examples of functions that are not linear.	RC.MATH.88.F.A. 3	Understand Linear Functions
8.AFN.B. 4	Construct a function to model a linear relationship in authentic contexts between two quantities.	RC.MATH.8- $\text { 8.F.B. } 4$	Analyze Linear Functions
8.AFN.B. 5	Describe qualitatively the functional relationship between two quantities in authentic contexts by analyzing a graph.	RC.MATH.8- $\text { 8.F.B. } 5$	Graphs of Functional Relationships
Numeric Reasoning: Number Systems			
8.NS.A. 1	Know that real numbers that are not rational are called irrational.	RC.MATH.8-8.NS.A.1-8.NS.A. 2	Rational and Irrational Numbers
8.NS.A. 2	Use rational approximations of irrational numbers to compare size and locate on a number line.	RC.MATH.8-8.NS.A.1-8.NS.A. 2	Rational and Irrational Numbers
Geometric Reasoning and Measurement			
8.GM.A. 1	Verify experimentally the properties of rotations, reflections, and translations.	$\begin{aligned} & \text { RC.MATH.8- } \\ & \text { 8.G.A.1-8.G.A. } 2 \end{aligned}$	Transformations and Congruence
8.GM.A. 2	Understand that a twodimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations.	RC.MATH.8-8.G.A.1-8.G.A. 2	Transformations and Congruence
8.GM.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	RC.MATH.8-8.G.A.3_2-8.G.A. 4	Transformations and Similarity
8.GM.A. 4	Understand that a twodimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations,	RC.MATH.8-8.G.A.3_2-8.G.A. 4	Transformations and Similarity

	reflections, translations, and/or dilations.		
8.GM.A. 5	Use informal arguments to establish facts about . . . angles formed by parallel lines cut with a transversal.	$\begin{aligned} & \text { RC.MATH.8- } \\ & \text { 8.G.A.5_1 } \end{aligned}$	Angle Relationships
8.GM.A. 5	Use informal arguments to establish facts about interior and exterior angles of triangles and angles formed by parallel lines cut with a transversal.	$\begin{aligned} & \text { RC.MATH.8- } \\ & \text { 8.G.A.5_2 } \end{aligned}$	Angle Relationships in Triangles
8.GM.B. 6	Distinguish between applications of the Pythagorean Theorem and its Converse in authentic contexts.	RC.MATH.8-8.G.B.6-8.G.B. 7	Pythagorean Theorem
8.GM.B. 7	Apply the Pythagorean Theorem in authentic contexts to determine unknown side lengths in right triangles.	RC.MATH.8-8.G.B.6-8.G.B. 7	Pythagorean Theorem
8.GM.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	$\begin{aligned} & \text { RC.MATH.8- } \\ & \text { 8.G.B. } 8 \end{aligned}$	Distance in the Coordinate Plane
8.GM.C. 9	Choose and use the appropriate formula for the volume of cones, cylinders, and spheres to solve problems in authentic contexts.	$\begin{aligned} & \text { RC.MATH.8- } \\ & \text { 8.G.C. } 9 \end{aligned}$	Volume of Cylinders, Cones, and Spheres
Data Reasoning			
8.DR.C. 3	Analyze patterns of association between two quantitative or categorical variables and reason about distributions to compare groups.	RC.MATH.88.SP.A. 1	Scatter Plots
8.DR.D. 4	Interpret scatter plots for bivariate quantitative data to investigate patterns of association between two quantities.	$\begin{aligned} & \text { RC.MATH.8- } \\ & \text { 8.SP.A. } 1 \end{aligned}$	Scatter Plots
8.DR.D. 4	Interpret scatter plots for bivariate quantitative data to investigate patterns of association between two quantities to answer investigative questions.	RC.MATH.88.SP.A. 3	Solve Problems with Linear Models

